Advertisements
Advertisements
प्रश्न
Find the number of ways in which : (a) a selection
उत्तर
There are 10 letters in the word PROPORTION, namely OOO, PP, RR, I, T and N.
(a) The four-letter word may consists of
(i) 3 alike letters and 1 distinct letter
(ii) 2 alike letters of one kind and 2 alike letters of the second kind
(iii) 2 alike letters and 2 distinct letters
(iv) all distinct letters
Now, we shall discuss these four cases one by one.
(i) 3 alike letters and 1 distinct letter:
There is one set of three alike letters, OOO, which can be selected in one way.
Out of the 5 different letters, P, R, I, T and N, one can be selected in
(ii) There are 3 sets of two alike letters, which can be selected in 3C2 = 3 ways.
(iii) There are three sets of two alike letters, which can be selected in 3C1 ways.
Now, from the remaining 5 letters, 2 letters can be chosen in 5C2 ways.
Thus, 2 alike letters and 2 different letters can be selected in 3C1 x 5C2 = 30 ways.
(iv) There are 6 different letters.
Number of ways of selecting 4 letters = 6C4 = 15
∴ Total number of ways = 5+ 3 + 30 + 15 = 53
APPEARS IN
संबंधित प्रश्न
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
How many 9-digit numbers of different digits can be formed?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
Evaluate the following:
35C35
If nC4 = nC6, find 12Cn.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
If nC4 , nC5 and nC6 are in A.P., then find n.
How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
Find the number of (i) diagonals
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
If 20Cr = 20Cr−10, then 18Cr is equal to
If 15C3r = 15Cr + 3 , then r is equal to
If nC12 = nC8 , then n =
If nCr + nCr + 1 = n + 1Cx , then x =
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Find the value of 20C16 – 19C16
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
How many committee of five persons with a chairperson can be selected from 12 persons.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.
A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.