Advertisements
Advertisements
प्रश्न
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
उत्तर
Number of routes from Goa to Bombay = 2
Number of routes from Bombay to Delhi = 3
Using fundamental principle of multiplication:
Number of routes from Goa to Delhi via Bombay = 2\[\times\]3 = 6
APPEARS IN
संबंधित प्रश्न
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Compute:
In how many ways can an examinee answer a set of ten true/false type questions?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?
How many three-digit numbers are there?
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
Evaluate the following:
12C10
Evaluate the following:
35C35
Evaluate the following:
n + 1Cn
If 15C3r = 15Cr + 3, find r.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
How many triangles can be obtained by joining 12 points, five of which are collinear?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If 15C3r = 15Cr + 3 , then r is equal to
If 20Cr + 1 = 20Cr − 1 , then r is equal to
If 43Cr − 6 = 43C3r + 1 , then the value of r is
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
How many committee of five persons with a chairperson can be selected from 12 persons.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
15C8 + 15C9 – 15C6 – 15C7 = ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.