मराठी

A Parallelogram is Cut by Two Sets of M Lines Parallel to Its Sides. Find the Number of Parallelograms Thus Formed. - Mathematics

Advertisements
Advertisements

प्रश्न

A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.

उत्तर

Each set of parallel lines consists of \[\left( m + 2 \right)\] lines.

Each parallelogram is formed by choosing two lines from the first set and two straight lines from the second set.
∴ Total number of parallelograms =\[{}^{m + 2} C_2 \times {}^{m + 2} C_2 = \left( {}^{m + 2} C_2 \right)^2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.2 | Q 32 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

How many chords can be drawn through 21 points on a circle?


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.


Compute:

 L.C.M. (6!, 7!, 8!)


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?


In how many ways can an examinee answer a set of ten true/false type questions?


How many 9-digit numbers of different digits can be formed?


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


Evaluate the following:

\[\sum^5_{r = 1} {}^5 C_r\]

 


In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

 exclude 2 particular players?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is included.


From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer


In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?


A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


Find the number of ways in which : (a) a selection


Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.


Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to


How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120


Find n if `""^6"P"_2 = "n" ""^6"C"_2`


In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?


If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×