Advertisements
Advertisements
प्रश्न
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
उत्तर
Clearly, 2 professors and 3 students are selected out of 10 professors and 20 students, respectively.
Required number of ways =\[{}^{10} C_2 \times^{20} C_3 = \frac{10}{2} \times \frac{9}{1} \times \frac{20}{3} \times \frac{19}{2} \times \frac{18}{1} = 51300\]
If a particular student is included, it means that 2 students are selected out of the remaining 19 students.
Required number of ways =\[{}^{19} C_2 \times^{10} C_2 = \frac{19}{2} \times \frac{18}{1} \times \frac{10}{2} \times \frac{9}{1} = 7695\]
APPEARS IN
संबंधित प्रश्न
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Compute:
(i)\[\frac{30!}{28!}\]
Compute:
L.C.M. (6!, 7!, 8!)
A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?
If nC12 = nC5, find the value of n.
If nC10 = nC12, find 23Cn.
If 15C3r = 15Cr + 3, find r.
If n +2C8 : n − 2P4 = 57 : 16, find n.
If nC4 , nC5 and nC6 are in A.P., then find n.
If 2nC3 : nC2 = 44 : 3, find n.
How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
How many triangles can be obtained by joining 12 points, five of which are collinear?
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
If n + 1C3 = 2 · nC2 , then n =
Find the value of 80C2
Find the value of 15C4 + 15C5
Find the value of 20C16 – 19C16
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
If nC12 = nC8, then n is equal to ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.