Advertisements
Advertisements
प्रश्न
If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?
उत्तर
In the given word EXAMINATION, there are 11 letters out of which, A, I, and N appear 2 times and all the other letters appear only once.
The words that will be listed before the words starting with E in a dictionary will be the words that start with A only.
Therefore, to get the number of words starting with A, the letter A is fixed at the extreme left position, and then the remaining 10 letters taken all at a time are rearranged.
Since there are 2 Is and 2 Ns in the remaining 10 letters,
Number of words starting with A = `(10!)/(2!2!)` = 907200
= `(10 xx 9 xx 8 xx 7 xx 6 xx 5 xx 4 xx 3 xx 2 xx 1)/4`
= 907200 By arranging the given letters like the letters in the dictionary, the next letter will be E.
∴ Number of words formed before E = 907200
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
How many different five-digit number licence plates can be made if
first digit cannot be zero and the repetition of digits is not allowed,
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
In how many ways can six persons be seated in a row?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
If nC12 = nC5, find the value of n.
If 18Cx = 18Cx + 2, find x.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
Find the number of (ii) triangles
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A convex polygon has 44 diagonals. Find the number of its sides.
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.