मराठी

How Many Different Five-digit Number Licence Plates Can Be Made Iffirst Digit Cannot Be Zero and the Repetition of Digits is Not Allowed, - Mathematics

Advertisements
Advertisements

प्रश्न

How many different five-digit number licence plates can be made if

first digit cannot be zero and the repetition of digits is not allowed,

उत्तर

(i) Since the first digit cannot be zero, the number of ways of filling the first digit = 9
 Number of ways of filling the second digit = 9     (Since repetition is not allowed)
 Number of ways of filling the third digit = 8
 Number of ways of filling the fourth digit = 7
 Number of ways of filling the fifth digit = 6
 Total number of licence plates that can be made = 9\[\times\]9\[\times\]8\[\times\]7\[\times\]6 = 27216

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.2 | Q 19.1 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


Twelve students complete in a race. In how many ways first three prizes be given?


How many three-digit numbers are there with no digit repeated?


How many 9-digit numbers of different digits can be formed?


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


24Cx = 24C2x + 3, find x.


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

include 2 particular players?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is excluded.


A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


If nCr + nCr + 1 = n + 1Cx , then x =


There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is


If n + 1C3 = 2 · nC2 , then n =


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A convex polygon has 44 diagonals. Find the number of its sides.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.


If some or all of n objects are taken at a time, the number of combinations is 2n – 1.


There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.


A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×