Advertisements
Advertisements
प्रश्न
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
पर्याय
2 × 11C7 + 10C8
10C8 + 11C7
12C8 − 10C6
none of these
उत्तर
12C8 − 10C6
A host lady can invite 8 out of 12 people in
∴ Number of ways = 12C8 − 10C6
APPEARS IN
संबंधित प्रश्न
If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?
Twelve students complete in a race. In how many ways first three prizes be given?
How many three-digit numbers are there?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
Evaluate the following:
n + 1Cn
Evaluate the following:
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
Find the number of diagonals of , 1.a hexagon
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
If nCr + nCr + 1 = n + 1Cx , then x =
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
If n + 1C3 = 2 · nC2 , then n =
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Find the value of 80C2
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
If nC12 = nC8, then n is equal to ______.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.