Advertisements
Advertisements
प्रश्न
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
पर्याय
56
120
28
91
उत्तर
120
If set \[S\] has n elements, then
\[ \Rightarrow 2^n = 2^8 \]
\[ \Rightarrow n = 8\]
\[ \Rightarrow^{16} C_2 = \frac{16!}{2! 14!} = \frac{16 \times 15}{2} = 120\]
APPEARS IN
संबंधित प्रश्न
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
Compute:
L.C.M. (6!, 7!, 8!)
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
Twelve students complete in a race. In how many ways first three prizes be given?
How many different five-digit number licence plates can be made if
first digit cannot be zero and the repetition of digits is not allowed,
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
Evaluate the following:
12C10
If 15Cr : 15Cr − 1 = 11 : 5, find r.
If n +2C8 : n − 2P4 = 57 : 16, find n.
How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
Find the number of (i) diagonals
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Find the value of 20C16 – 19C16
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
If α = mC2, then αC2 is equal to.
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
A convex polygon has 44 diagonals. Find the number of its sides.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.
From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.