मराठी

Find the Number of (I) Diagonals - Mathematics

Advertisements
Advertisements

प्रश्न

Find the number of (i) diagonals

उत्तर

A decagon has 10 sides.
(i)  Number of diagonals =\[\frac{n \left( n - 3 \right)}{2} = \frac{10 \left( 10 - 3 \right)}{2} = 35\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.2 | Q 21.1 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?


Compute: 

(i)\[\frac{30!}{28!}\]


A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


In how many ways can an examinee answer a set of ten true/false type questions?


A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?


In how many ways can six persons be seated in a row?


How many 9-digit numbers of different digits can be formed?


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


Evaluate the following:

14C3


Evaluate the following:

35C35


Evaluate the following:

n + 1Cn


If nC4 = nC6, find 12Cn.


24Cx = 24C2x + 3, find x.


If 15C3r = 15Cr + 3, find r.


If 15Cr : 15Cr − 1 = 11 : 5, find r.


If 2nC3 : nC2 = 44 : 3, find n.


If 16Cr = 16Cr + 2, find rC4.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

 exclude 2 particular players?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is excluded.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


How many triangles can be obtained by joining 12 points, five of which are collinear?


In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl? 


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


If C (n, 12) = C (n, 8), then C (22, n) is equal to


If mC1 nC2 , then


There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is


Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.


All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×