मराठी

How Many 9-digit Numbers of Different Digits Can Be Formed? - Mathematics

Advertisements
Advertisements

प्रश्न

How many 9-digit numbers of different digits can be formed?

उत्तर

Since the first digit cannot be zero, number of ways of filling the first digit = 9
Number of ways of filling the second digit = 9    (as repetition is not allowed or the digits are distinct)
Number of ways of filling the third digit = 8
Number of ways of filling the fourth digit = 7
Number of ways of filling the fifth digit = 6
Number of ways of filling the sixth digit = 5
Number of ways of filling the seventh digit = 4
Number of ways of filling the eighth digit = 3
Number of ways of filling the ninth digit = 2
Total such 9-digit numbers = `9xx9xx8xx7xx6xx5xx4xx3xx2=9(9!)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Permutations - Exercise 16.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 16 Permutations
Exercise 16.2 | Q 23 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:

(i) exactly 3 girls?

(ii) atleast 3 girls?

(iii) atmost 3 girls?


A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?


Twelve students complete in a race. In how many ways first three prizes be given?


From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?


How many different five-digit number licence plates can be made if

the first-digit cannot be zero, but the repetition of digits is allowed?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


If n +2C8 : n − 2P4 = 57 : 16, find n.


How many different selections of 4 books can be made from 10 different books, if
there is no restriction;


A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?


In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?


A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?


A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.


If 15C3r = 15Cr + 3 , then r is equal to


If nC12 = nC8 , then n =


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.


Answer the following:

A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?


In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?


In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?


In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?


The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?


A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


If nC12 = nC8, then n is equal to ______.


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.


There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.


Number of selections of at least one letter from the letters of MATHEMATICS, is ______.


The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×