Advertisements
Advertisements
प्रश्न
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
पर्याय
45
350
4200
230
उत्तर
350
Explanation:
Out of 7 men, 3 men can be chosen in 7C3 ways and out of 5 women
2 women can be chosen in 5C2 ways.
Hence, the committee can be chosen in 7C3 × 5C2 = 350 ways.
APPEARS IN
संबंधित प्रश्न
How many chords can be drawn through 21 points on a circle?
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
Compute:
(i)\[\frac{30!}{28!}\]
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
How many three-digit odd numbers are there?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
How many 9-digit numbers of different digits can be formed?
Evaluate the following:
35C35
If 18Cx = 18Cx + 2, find x.
If α = mC2, then find the value of αC2.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
Find the number of diagonals of (ii) a polygon of 16 sides.
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
If 43Cr − 6 = 43C3r + 1 , then the value of r is
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Find the value of 15C4 + 15C5
If α = mC2, then αC2 is equal to.
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.