मराठी

From 4 Officers and 8 Jawans in How Many Ways Can 6 Be Chosen. to Include at Least One Officer? - Mathematics

Advertisements
Advertisements

प्रश्न

From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?

उत्तर

 From 4 officers and 8 jawans, 6 need to be chosen and at least one of them is an officer.
Required number of ways =  Total number of ways -  Number of ways in which no officer is selected

\[=^{12} C_6 -^8 C_6 \]
\[ = \frac{12!}{6! 6!} - \frac{8!}{6! 2!} \]
\[ = \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 3 \times 2 \times 1} - \frac{8 \times 7}{2} \]
\[ = 924 - 28\]
\[ = 896\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.2 | Q 9.2 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


In how many ways can an examinee answer a set of ten true/false type questions?


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?


How many three-digit odd numbers are there?


How many different five-digit number licence plates can be made if

the first-digit cannot be zero, but the repetition of digits is allowed?


How many 9-digit numbers of different digits can be formed?


Evaluate the following:

14C3


24Cx = 24C2x + 3, find x.


If 18Cx = 18Cx + 2, find x.


If n +2C8 : n − 2P4 = 57 : 16, find n.


If 16Cr = 16Cr + 2, find rC4.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.


How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?


How many different selections of 4 books can be made from 10 different books, if
there is no restriction;


How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;


In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


If 43Cr − 6 = 43C3r + 1 , then the value of r is


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.


There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:

C1 C2
(a) One book of each subject; (i) 3968
(b) At least one book of each subject: (ii) 60
(c) At least one book of English: (iii) 3255

There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?


There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.


The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×