Advertisements
Advertisements
प्रश्न
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
उत्तर
If there are at least 3 girls in the committee then the committees will be formed as follows:
- 3 girls, 4 boys
- 4 girls, 3 boys
Total ways of forming these committees = 4C3 x 9C4 + 4C4 x 9C3
= 4C1 x 9C4 + 1 x 9C3
= `4 xx (9 xx 8 xx 7 xx 6)/(1 xx 2 xx 3 xx 4) + (9 xx 8 xx 7)/(1 xx 2 xx 3)`
= 504 + 84
= 588
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
How many chords can be drawn through 21 points on a circle?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
In how many ways can an examinee answer a set of ten true/false type questions?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?
How many three-digit numbers are there with no digit repeated?
How many three-digit numbers are there?
Evaluate the following:
12C10
f 24Cx = 24C2x + 3, find x.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
Find the number of diagonals of , 1.a hexagon
How many triangles can be obtained by joining 12 points, five of which are collinear?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
Find the number of ways in which : (a) a selection
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
If 20Cr = 20Cr−10, then 18Cr is equal to
If 15C3r = 15Cr + 3 , then r is equal to
If nC12 = nC8 , then n =
If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
If 43Cr − 6 = 43C3r + 1 , then the value of r is
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.