Advertisements
Advertisements
प्रश्न
How many chords can be drawn through 21 points on a circle?
उत्तर
For drawing one chord on a circle, only 2 points are required.
To know the number of chords that can be drawn through the given 21 points on a circle, the number of combinations have to be counted.
Therefore, there will be as many chords as there are combinations of 21 points taken 2 at a time.
Thus, required number of chords =
= 21C2 = `(21!)/(2!(21 - 2)!) = (21!)/(2!19!)`
= `(21 xx 20)/(1 xx 2)`
= 210
APPEARS IN
संबंधित प्रश्न
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
Compute:
Twelve students complete in a race. In how many ways first three prizes be given?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
Evaluate the following:
14C3
If nC10 = nC12, find 23Cn.
If 16Cr = 16Cr + 2, find rC4.
If α = mC2, then find the value of αC2.
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
If 20Cr = 20Cr−10, then 18Cr is equal to
If C (n, 12) = C (n, 8), then C (22, n) is equal to
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
The number of diagonals that can be drawn by joining the vertices of an octagon is
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.