Advertisements
Advertisements
Question
How many chords can be drawn through 21 points on a circle?
Solution
For drawing one chord on a circle, only 2 points are required.
To know the number of chords that can be drawn through the given 21 points on a circle, the number of combinations have to be counted.
Therefore, there will be as many chords as there are combinations of 21 points taken 2 at a time.
Thus, required number of chords =
= 21C2 = `(21!)/(2!(21 - 2)!) = (21!)/(2!19!)`
= `(21 xx 20)/(1 xx 2)`
= 210
APPEARS IN
RELATED QUESTIONS
If nC8 = nC2, find nC2.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
How many three-digit odd numbers are there?
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
35C35
If nC4 = nC6, find 12Cn.
If 18Cx = 18Cx + 2, find x.
If nC4 , nC5 and nC6 are in A.P., then find n.
If 16Cr = 16Cr + 2, find rC4.
How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
If C (n, 12) = C (n, 8), then C (22, n) is equal to
If 43Cr − 6 = 43C3r + 1 , then the value of r is
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.