Advertisements
Advertisements
Question
If nC4 , nC5 and nC6 are in A.P., then find n.
Solution
Since nC4 , nC5 and nC6 are in AP.
∴ 2. nC5 = nC4 + nC6
\[ \Rightarrow \frac{2}{5 \times 4!\left( n - 5 \right)\left( n - 6 \right)!} = \frac{1}{4!\left( n - 5 \right)\left( n - 4 \right)\left( n - 6 \right)!} + \frac{1}{6 \times 5 \times 4!\left( n - 6 \right)!}\]
\[ \Rightarrow \frac{2}{5\left( n - 5 \right)} = \frac{1}{\left( n - 5 \right)\left( n - 4 \right)} + \frac{1}{30}\]
\[ \Rightarrow \frac{2}{5\left( n - 5 \right)} - \frac{1}{\left( n - 5 \right)\left( n - 4 \right)} = \frac{1}{30}\]
\[ \Rightarrow \frac{2n - 8 - 5}{5\left( n - 5 \right)\left( n - 4 \right)} = \frac{1}{30}\]
\[ \Rightarrow \frac{2n - 13}{\left( n - 5 \right)\left( n - 4 \right)} = \frac{1}{6}\]
\[ \Rightarrow 12n - 78 = n^2 - 9n + 20\]
\[ \Rightarrow n^2 - 21n + 98 = 0\]
\[ \Rightarrow \left( n - 7 \right)\left( n - 14 \right) = 0\]
\[ \therefore n = 7 \text{and} 14\]
APPEARS IN
RELATED QUESTIONS
If nC8 = nC2, find nC2.
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
Prove that
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
Evaluate the following:
12C10
If 15Cr : 15Cr − 1 = 11 : 5, find r.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
If mC1 = nC2 , then
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Find the value of 20C16 – 19C16
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.
A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.
The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.