English

If Nc4 , Nc5 and Nc6 Are in A.P., Then Find N. - Mathematics

Advertisements
Advertisements

Question

If nC4 , nC5 and nC6 are in A.P., then find n.

Solution

Since nC4 , nC5 and nC6 are in AP.

∴ 2. nC5 = nC4 + nC6 

\[\Rightarrow 2 \times \frac{n!}{5!\left( n - 5 \right)!} = \frac{n!}{4!\left( n - 4 \right)!} + \frac{n!}{6!\left( n - 6 \right)!}\]
\[ \Rightarrow \frac{2}{5 \times 4!\left( n - 5 \right)\left( n - 6 \right)!} = \frac{1}{4!\left( n - 5 \right)\left( n - 4 \right)\left( n - 6 \right)!} + \frac{1}{6 \times 5 \times 4!\left( n - 6 \right)!}\]
\[ \Rightarrow \frac{2}{5\left( n - 5 \right)} = \frac{1}{\left( n - 5 \right)\left( n - 4 \right)} + \frac{1}{30}\]
\[ \Rightarrow \frac{2}{5\left( n - 5 \right)} - \frac{1}{\left( n - 5 \right)\left( n - 4 \right)} = \frac{1}{30}\]
\[ \Rightarrow \frac{2n - 8 - 5}{5\left( n - 5 \right)\left( n - 4 \right)} = \frac{1}{30}\]
\[ \Rightarrow \frac{2n - 13}{\left( n - 5 \right)\left( n - 4 \right)} = \frac{1}{6}\]
\[ \Rightarrow 12n - 78 = n^2 - 9n + 20\]
\[ \Rightarrow n^2 - 21n + 98 = 0\]
\[ \Rightarrow \left( n - 7 \right)\left( n - 14 \right) = 0\]
\[ \therefore n = 7 \text{and} 14\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.1 [Page 8]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.1 | Q 12 | Page 8

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If nC8 = nC2, find nC2.


Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


Evaluate the following:

12C10


If 15Cr : 15Cr − 1 = 11 : 5, find r.


From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;


A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?


Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.


If mC1 nC2 , then


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?


Find the value of 20C1619C16 


A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls


The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.


The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.


If some or all of n objects are taken at a time, the number of combinations is 2n – 1.


There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:

C1 C2
(a) One book of each subject; (i) 3968
(b) At least one book of each subject: (ii) 60
(c) At least one book of English: (iii) 3255

A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×