Advertisements
Advertisements
Question
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
Solution
Let us make the following cases:
Case (i): Boy borrows Mathematics Part II
Then he borrows Mathematics Part I also.
So the number of possible choices is 6C1 = 6.
Case (ii): Boy does not borrow Mathematics Part II
Then the number of possible choices is 7C3 = 35.
Hence, the total number of possible choices is 35 + 6 = 41.
APPEARS IN
RELATED QUESTIONS
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
Prove that
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
How many three-digit odd numbers are there?
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
Evaluate the following:
35C35
If nC10 = nC12, find 23Cn.
If α = mC2, then find the value of αC2.
How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If 43Cr − 6 = 43C3r + 1 , then the value of r is
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.