English

A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can h - Mathematics

Advertisements
Advertisements

Question

A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?

Sum

Solution

Let us make the following cases:

Case (i): Boy borrows Mathematics Part II

Then he borrows Mathematics Part I also.

So the number of possible choices is 6C1 = 6.

Case (ii): Boy does not borrow Mathematics Part II

Then the number of possible choices is 7C3 = 35.

Hence, the total number of possible choices is 35 + 6 = 41.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Permutations and Combinations - Solved Examples [Page 119]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 7 Permutations and Combinations
Solved Examples | Q 11 | Page 119

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?


How many three-digit odd numbers are there?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


Evaluate the following:

35C35


If nC10 = nC12, find 23Cn.


If α = mC2, then find the value of αC2.


How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.


If 43Cr − 6 = 43C3r + 1 , then the value of r is


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120


Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?


In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?


If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×