English

A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected. - Mathematics

Advertisements
Advertisements

Question

A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.

Sum

Solution

Ways to select 2 balls out of 5 black balls = 5C2

Ways to select 3 balls out of 6 red balls = 6C3

Total ways of selecting 2 black and 3 red balls out of 5 black and 6 red balls.

=5C2 × 6C3

= 5!2!3!×6!3!3!

= 5×42×6×5×43×2×1

= 10 x 20

= 200

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Permutations and Combinations - Exercise 7.4 [Page 153]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 7 Permutations and Combinations
Exercise 7.4 | Q 8 | Page 153

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If nC8 = nC2, find nC2.


Determine n if  2nC3:nC3=11:1


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?


A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?


From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


How many three-digit numbers are there with no digit repeated?


How many 3-digit numbers are there, with distinct digits, with each digit odd?


Evaluate the following:

12C10


Evaluate the following:

35C35


If nC4 = nC6, find 12Cn.


24Cx = 24C2x + 3, find x.


If 15C3r = 15Cr + 3, find r.


If 15Cr : 15Cr − 1 = 11 : 5, find r.


How many different selections of 4 books can be made from 10 different books, if
there is no restriction;


How many triangles can be obtained by joining 12 points, five of which are collinear?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl? 


A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?


Find the number of ways in which : (a) a selection


If nCr + nCr + 1 = n + 1Cx , then x =


Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


Find n if 6P2=n6C2


A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.


The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.


A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:

C1 C2
(a) One book of each subject; (i) 3968
(b) At least one book of each subject: (ii) 60
(c) At least one book of English: (iii) 3255

Number of selections of at least one letter from the letters of MATHEMATICS, is ______.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.