Advertisements
Advertisements
Question
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Solution
There are a total of 6 red balls, 5 white balls, and 5 blue balls.
9 balls have to be selected in such a way that each selection consists of 3 balls of each colour.
Here,
3 balls can be selected from 6 red balls in 6C3 ways.
3 balls can be selected from 5 white balls in 5C3 ways.
3 balls can be selected from 5 blue balls in 5C3 ways.
Thus, by multiplication principle, required number of ways of selecting 9 balls
= 6C3 x 5C3 x 5C3 = `(6!)/(3!3!) xx (5!)/(3!2!) xx (5!)/(3!2!)`
= `(6 xx 5 xx 4 xx 3!)/(3! xx 3 xx 2) xx (5 xx 4 xx 3!)/(3! xx 2 xx 1) xx (5 xx 4 xx 3!)/ (3! xx 2 xx 1`
= 20 x 10 x 10
= 2000
APPEARS IN
RELATED QUESTIONS
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
Compute:
(i)\[\frac{30!}{28!}\]
Compute:
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?
Evaluate the following:
35C35
If nC12 = nC5, find the value of n.
If nC4 = nC6, find 12Cn.
If 8Cr − 7C3 = 7C2, find r.
If n +2C8 : n − 2P4 = 57 : 16, find n.
If 2nC3 : nC2 = 44 : 3, find n.
If 16Cr = 16Cr + 2, find rC4.
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
If 20Cr = 20Cr−10, then 18Cr is equal to
There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
The number of diagonals that can be drawn by joining the vertices of an octagon is
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.