Advertisements
Advertisements
Question
A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.
Solution
A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee 7800.
Explanation:
We have 10 men and 7 women out of which a committee of 6 is to be formed which contain atleast 3 men and 2 women
Therefore, Number of ways = 10C3 × 7C3 + 10C4 × 7C2
= `(10 xx 9 xx 8)/(3 xx 2 xx 1) xx (7 xx 6 xx 5)/(3 xx 2 xx 1) + (10 xx 9 xx 8 xx 7)/(4 xx 3 xx 2 xx ) xx (7 xx 6)/(2 xx 1)`
= 120 × 35 + 210 × 21
= 4200 + 4410
= 8610
If 2 particular women to be always present, then the number of ways = 10C4 × 5C0 + 10C3 × 5C1
= `(10 xx 9 xx 8 xx 7)/(4 xx 3 xx 2 xx 1) xx 1 + (10 xx 9 xx 8)/(3 xx 2 xx 1) xx 5`
= 210 + 120 × 5
= 210 + 600
= 810
∴ Total number of committee = 8610 – 810 = 7800
Hence, the value of the filler is 7800.
APPEARS IN
RELATED QUESTIONS
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
In how many ways can an examinee answer a set of ten true/false type questions?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
If 18Cx = 18Cx + 2, find x.
If 2nC3 : nC2 = 44 : 3, find n.
If 16Cr = 16Cr + 2, find rC4.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
If C (n, 12) = C (n, 8), then C (22, n) is equal to
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
If 43Cr − 6 = 43C3r + 1 , then the value of r is
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
If α = mC2, then αC2 is equal to.
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.