English

There Are 10 Professors and 20 Students Out of Whom a Committee of 2 Professors and 3 Students is to Be Formed. a Particular Student is Included. - Mathematics

Advertisements
Advertisements

Question

There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is included.

Solution

Clearly, 2 professors and 3 students are selected out of 10 professors and 20 students, respectively.
Required number of ways  =\[{}^{10} C_2 \times^{20} C_3 = \frac{10}{2} \times \frac{9}{1} \times \frac{20}{3} \times \frac{19}{2} \times \frac{18}{1} = 51300\]

 If a particular student is included, it means that 2 students are selected out of the remaining 19 students.

Required number of ways =\[{}^{19} C_2 \times^{10} C_2 = \frac{19}{2} \times \frac{18}{1} \times \frac{10}{2} \times \frac{9}{1} = 7695\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.2 | Q 5.2 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Determine n if  `""^(2n)C_3 : ""^nC_3 = 12 : 1`


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:

(i) exactly 3 girls?

(ii) atleast 3 girls?

(iii) atmost 3 girls?


Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.


It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


Twelve students complete in a race. In how many ways first three prizes be given?


How many different five-digit number licence plates can be made if

first digit cannot be zero and the repetition of digits is not allowed,


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


If nC4 = nC6, find 12Cn.


If 15C3r = 15Cr + 3, find r.


If nC4 , nC5 and nC6 are in A.P., then find n.


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines


Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is


Find n if `""^6"P"_2 = "n" ""^6"C"_2`


Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.


The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.


There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


15C8 + 15C915C615C7 = ______.


The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.


There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:

C1 C2
(a) One book of each subject; (i) 3968
(b) At least one book of each subject: (ii) 60
(c) At least one book of English: (iii) 3255

There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×