English

How Many Different Five-digit Number Licence Plates Can Be Made Iffirst Digit Cannot Be Zero and the Repetition of Digits is Not Allowed, - Mathematics

Advertisements
Advertisements

Question

How many different five-digit number licence plates can be made if

first digit cannot be zero and the repetition of digits is not allowed,

Solution

(i) Since the first digit cannot be zero, the number of ways of filling the first digit = 9
 Number of ways of filling the second digit = 9     (Since repetition is not allowed)
 Number of ways of filling the third digit = 8
 Number of ways of filling the fourth digit = 7
 Number of ways of filling the fifth digit = 6
 Total number of licence plates that can be made = 9\[\times\]9\[\times\]8\[\times\]7\[\times\]6 = 27216

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.2 | Q 19.1 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

How many chords can be drawn through 21 points on a circle?


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:

(i) exactly 3 girls?

(ii) atleast 3 girls?

(iii) atmost 3 girls?


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


Compute: 

(i)\[\frac{30!}{28!}\]


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?


A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


Twelve students complete in a race. In how many ways first three prizes be given?


In how many ways can six persons be seated in a row?


Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


Evaluate the following:

14C3


Evaluate the following:

35C35


If nC12 = nC5, find the value of n.


24Cx = 24C2x + 3, find x.


From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?


From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer


A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?


Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.


A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Find the value of 80C2


In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?


How many committee of five persons with a chairperson can be selected from 12 persons.


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×