Advertisements
Advertisements
Question
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
Solution
Since the first digit cannot be zero, the number of ways of filling the first digit = 9
Number of ways of filling the second digit = 10 (Since repetition is allowed)
Number of ways of filling the third digit = 10
Number of ways of filling the fourth digit = 10
Number of ways of filling the fifth digit = 10
Total number of licence plates that can be made = 9\[\times\]10\[\times\]10\[\times\]10\[\times\]10 = 90000
APPEARS IN
RELATED QUESTIONS
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
How many 9-digit numbers of different digits can be formed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?
Evaluate the following:
14C3
If nC12 = nC5, find the value of n.
f 24Cx = 24C2x + 3, find x.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Find the number of (ii) triangles
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
If 20Cr = 20Cr + 4 , then rC3 is equal to
If mC1 = nC2 , then
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
Find the value of 15C4
The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
A convex polygon has 44 diagonals. Find the number of its sides.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.