Advertisements
Advertisements
Question
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Solution
It is given that the question paper consists of 12 questions divided into two parts – Part I and Part II, containing 5 and 7 questions, respectively.
A student has to attempt 8 questions, selecting at least 3 from each part.
This can be done as follows.
- 3 questions from part I and 5 questions from part II
- 4 questions from part I and 4 questions from part II
- 5 questions from part I and 3 questions from part II
3 questions from part I and 5 questions from part II can be selected in `""^5C_3 xx ""^7C_5`ways.
4 questions from part I and 4 questions from part II can be selected in `""^5C_4 xx ""^7C_4` ways.
5 questions from part I and 3 questions from part II can be selected in `""^5C_5 xx ""^7C_3` ways.
Thus, required number of ways of selecting questions
= 5C3 x 7C5 + 5C4 x 7C4 + 5C5 x 7C3
= `(5!)/(2!3!) xx (7!)/(2!5!) xx (5!)/(4!1!) xx (7!)/(4!3!) xx (5!)/(5!0!) xx (7!)/(3!4!)`
= `(5 xx 4)/(2) xx (7 xx 6)/(2) + 5 xx (7 xx 6 xx 5)/(3 xx 2) + 1 xx (7xx 6 xx 5)/(3 xx 2)`
= 210 + 175 + 35
= 420
APPEARS IN
RELATED QUESTIONS
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
Compute:
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
Twelve students complete in a race. In how many ways first three prizes be given?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
In how many ways can six persons be seated in a row?
Evaluate the following:
12C10
If 15Cr : 15Cr − 1 = 11 : 5, find r.
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
If nCr + nCr + 1 = n + 1Cx , then x =
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
If 43Cr − 6 = 43C3r + 1 , then the value of r is
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
Find the value of 15C4 + 15C5
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
How many committee of five persons with a chairperson can be selected from 12 persons.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.
There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.