Advertisements
Advertisements
प्रश्न
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
उत्तर
It is given that the question paper consists of 12 questions divided into two parts – Part I and Part II, containing 5 and 7 questions, respectively.
A student has to attempt 8 questions, selecting at least 3 from each part.
This can be done as follows.
- 3 questions from part I and 5 questions from part II
- 4 questions from part I and 4 questions from part II
- 5 questions from part I and 3 questions from part II
3 questions from part I and 5 questions from part II can be selected in `""^5C_3 xx ""^7C_5`ways.
4 questions from part I and 4 questions from part II can be selected in `""^5C_4 xx ""^7C_4` ways.
5 questions from part I and 3 questions from part II can be selected in `""^5C_5 xx ""^7C_3` ways.
Thus, required number of ways of selecting questions
= 5C3 x 7C5 + 5C4 x 7C4 + 5C5 x 7C3
= `(5!)/(2!3!) xx (7!)/(2!5!) xx (5!)/(4!1!) xx (7!)/(4!3!) xx (5!)/(5!0!) xx (7!)/(3!4!)`
= `(5 xx 4)/(2) xx (7 xx 6)/(2) + 5 xx (7 xx 6 xx 5)/(3 xx 2) + 1 xx (7xx 6 xx 5)/(3 xx 2)`
= 210 + 175 + 35
= 420
APPEARS IN
संबंधित प्रश्न
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
Prove that
How many three-digit odd numbers are there?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
14C3
Evaluate the following:
n + 1Cn
If 15Cr : 15Cr − 1 = 11 : 5, find r.
If 16Cr = 16Cr + 2, find rC4.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
If nC12 = nC8 , then n =
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
If 43Cr − 6 = 43C3r + 1 , then the value of r is
If n + 1C3 = 2 · nC2 , then n =
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Find the value of 80C2
Find the value of 15C4 + 15C5
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.