मराठी

In an Examination, a Question Paper Consists of 12 Questions Divided into Two Parts I.E., Part I and Part Ii, Containing 5 and 7 Questions, Respectively - Mathematics

Advertisements
Advertisements

प्रश्न

In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?

बेरीज

उत्तर

It is given that the question paper consists of 12 questions divided into two parts – Part I and Part II, containing 5 and 7 questions, respectively.

A student has to attempt 8 questions, selecting at least 3 from each part.

This can be done as follows.

  1. 3 questions from part I and 5 questions from part II
  2. 4 questions from part I and 4 questions from part II
  3. 5 questions from part I and 3 questions from part II

3 questions from part I and 5 questions from part II can be selected in `""^5C_3 xx ""^7C_5`ways.

4 questions from part I and 4 questions from part II can be selected in `""^5C_4 xx ""^7C_4` ways.

5 questions from part I and 3 questions from part II can be selected in `""^5C_5 xx  ""^7C_3` ways.

Thus, required number of ways of selecting questions

= 5C3 x 7C5 + 5C4 x 7C4 + 5C5 x 7C3

= `(5!)/(2!3!) xx (7!)/(2!5!) xx (5!)/(4!1!) xx (7!)/(4!3!) xx (5!)/(5!0!) xx (7!)/(3!4!)` 

= `(5 xx 4)/(2) xx (7 xx 6)/(2) + 5 xx (7 xx 6 xx 5)/(3 xx 2) + 1 xx (7xx 6 xx 5)/(3 xx 2)`

= 210 + 175 + 35

= 420

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Permutations and Combinations - Miscellaneous Exercise [पृष्ठ १५७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 7 Permutations and Combinations
Miscellaneous Exercise | Q 7 | पृष्ठ १५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

How many three-digit odd numbers are there?


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


Evaluate the following:

14C3


Evaluate the following:

n + 1Cn


If 15Cr : 15Cr − 1 = 11 : 5, find r.


If 16Cr = 16Cr + 2, find rC4.


How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?


How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?


From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer


From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls? 


Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?


Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?


If nC12 = nC8 , then n =


How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120


If 43Cr − 6 = 43C3r + 1 , then the value of r is


If n + 1C3 = 2 · nC2 , then n =


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is


A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.


Find the value of 80C2


Find the value of 15C4 + 15C5 


A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?


In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C25C2.


If some or all of n objects are taken at a time, the number of combinations is 2n – 1.


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×