Advertisements
Advertisements
प्रश्न
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
उत्तर
Let us make the following cases:
Case (i): Boy borrows Mathematics Part II
Then he borrows Mathematics Part I also.
So the number of possible choices is 6C1 = 6.
Case (ii): Boy does not borrow Mathematics Part II
Then the number of possible choices is 7C3 = 35.
Hence, the total number of possible choices is 35 + 6 = 41.
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
Compute:
L.C.M. (6!, 7!, 8!)
Prove that
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
Twelve students complete in a race. In how many ways first three prizes be given?
How many three-digit numbers are there?
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
Evaluate the following:
35C35
If 28C2r : 24C2r − 4 = 225 : 11, find r.
If nC4 , nC5 and nC6 are in A.P., then find n.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
Find the number of diagonals of (ii) a polygon of 16 sides.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
Find the number of (ii) triangles
If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
If n + 1C3 = 2 · nC2 , then n =
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
If nC12 = nC8, then n is equal to ______.
Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.