मराठी

Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.

बेरीज

उत्तर

There are a total of 6 red balls, 5 white balls, and 5 blue balls.

9 balls have to be selected in such a way that each selection consists of 3 balls of each colour.

Here,

3 balls can be selected from 6 red balls in 6C3 ways.

3 balls can be selected from 5 white balls in 5C3 ways.

3 balls can be selected from 5 blue balls in 5C3 ways.

Thus, by multiplication principle, required number of ways of selecting 9 balls

= 6Cx 5Cx 5C3 = `(6!)/(3!3!) xx (5!)/(3!2!) xx (5!)/(3!2!)`

= `(6 xx 5 xx 4 xx 3!)/(3! xx 3 xx 2) xx (5 xx 4 xx 3!)/(3! xx 2 xx 1) xx (5 xx 4 xx 3!)/ (3! xx 2 xx 1`

= 20 x 10 x 10

= 2000

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Permutations and Combinations - Exercise 7.4 [पृष्ठ १५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 7 Permutations and Combinations
Exercise 7.4 | Q 5 | पृष्ठ १५३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

How many chords can be drawn through 21 points on a circle?


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?


A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?


How many three-digit numbers are there with no digit repeated?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


How many 9-digit numbers of different digits can be formed?


How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?


Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?


Evaluate the following:

35C35


If nC4 = nC6, find 12Cn.


If 18Cx = 18Cx + 2, find x.


If 28C2r : 24C2r − 4 = 225 : 11, find r.


If 2nC3 : nC2 = 44 : 3, find n.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.


How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


Find the number of (ii) triangles


Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to


If 43Cr − 6 = 43C3r + 1 , then the value of r is


Find n if `""^6"P"_2 = "n" ""^6"C"_2`


Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.


A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.


Answer the following:

A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?


If α = mC2, then αCis equal to.


In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.


Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.


A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×