मराठी

The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet? - Mathematics

Advertisements
Advertisements

प्रश्न

The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?

बेरीज

उत्तर

2 different vowels and 2 different consonants are to be selected from the English alphabet.

Since there are 5 vowels in the English alphabet, number of ways of selecting 2 different vowels from the alphabet

= `""^5C_2  =  (5!)/(2!3!)  = 10`

Since there are 21 consonants in the English alphabet, number of ways of selecting 2 different consonants from the alphabet 

= `""^21C_2  = (21!)/(2!19!)  = 210`

Therefore, number of combinations of 2 different vowels and 2 different consonants = 10 × 210 = 2100

Each of these 2100 combinations has 4 letters, which can be arranged among themselves in 4! ways.

Therefore, required number of words = 2100 × 4!

= 24 x 2100

= 50400

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Permutations and Combinations - Miscellaneous Exercise [पृष्ठ १५७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 7 Permutations and Combinations
Miscellaneous Exercise | Q 6 | पृष्ठ १५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


How many three-digit numbers are there with no digit repeated?


How many three-digit numbers are there?


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


If 16Cr = 16Cr + 2, find rC4.


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

 exclude 2 particular players?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is included.


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


How many different selections of 4 books can be made from 10 different books, if
there is no restriction;


How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?


Find the number of diagonals of , 1.a hexagon


A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?


Find the number of (ii) triangles


In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?


Find the number of ways in which : (a) a selection


There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.


If 20Cr = 20Cr + 4 , then rC3 is equal to


If C (n, 12) = C (n, 8), then C (22, n) is equal to


If nC12 = nC8 , then n =


Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?


A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red


A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.


A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×