मराठी

Find the Number of Diagonals of , a Hexagon - Mathematics

Advertisements
Advertisements

प्रश्न

Find the number of diagonals of , 1.a hexagon

उत्तर

A polygon of n sides has n vertices. By joining any two vertices we obtain either a side or a diagonal.
∴ Number of ways of selecting 2 out of 9 \[=^n C_2 = \frac{n\left( n - 1 \right)}{2}\]

Out of these lines, n lines are the sides of the polygon.

∴ Number of diagonals =\[\frac{n\left( n - 1 \right)}{2} - n = \frac{n\left( n - 3 \right)}{2}\]

1. In a hexagon, there are 6 sides.
∴ Number of diagonals =\[\frac{6\left( 6 - 3 \right)}{2} = 9\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.2 | Q 15.1 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.


Compute: 

(i)\[\frac{30!}{28!}\]


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?


Evaluate the following:

14C3


If nC12 = nC5, find the value of n.


If nC10 = nC12, find 23Cn.


If 15C3r = 15Cr + 3, find r.


If 2nC3 : nC2 = 44 : 3, find n.


From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


How many triangles can be obtained by joining 12 points, five of which are collinear?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?


Find the number of (i) diagonals


Find the number of (ii) triangles


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?


Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.


If nC12 = nC8 , then n =


How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is


Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?


Find the value of 20C1619C16 


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl


The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.


The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.


The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×