Advertisements
Advertisements
प्रश्न
Find the value of 20C16 – 19C16
उत्तर
20C16 – 19C16
= 19C16 + 19C15 – 19C16 ...[∵ nCr + nCr–1 = n+1Cr]
= 19C15
= `(19!)/(15!(19 - 15)!)`
= `(19!)/(15!4!)`
= `(19 xx 18 xx 17 xx 16 xx 15!)/(15! xx 4 xx 3 xx 2 xx 1)`
= 19 × 6 × 17 × 2
= 3876
∴ 20C16 – 19C16 = 19C15 = 3876
APPEARS IN
संबंधित प्रश्न
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
Compute:
(i)\[\frac{30!}{28!}\]
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
In how many ways can an examinee answer a set of ten true/false type questions?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit odd numbers are there?
In how many ways can six persons be seated in a row?
How many 9-digit numbers of different digits can be formed?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
12C10
If nC12 = nC5, find the value of n.
If nC4 = nC6, find 12Cn.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
If α = mC2, then find the value of αC2.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
Find the number of (ii) triangles
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
If 20Cr = 20Cr + 4 , then rC3 is equal to
If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =
There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
If 43Cr − 6 = 43C3r + 1 , then the value of r is
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.