Advertisements
Advertisements
Question
Find the value of 20C16 – 19C16
Solution
20C16 – 19C16
= 19C16 + 19C15 – 19C16 ...[∵ nCr + nCr–1 = n+1Cr]
= 19C15
= `(19!)/(15!(19 - 15)!)`
= `(19!)/(15!4!)`
= `(19 xx 18 xx 17 xx 16 xx 15!)/(15! xx 4 xx 3 xx 2 xx 1)`
= 19 × 6 × 17 × 2
= 3876
∴ 20C16 – 19C16 = 19C15 = 3876
APPEARS IN
RELATED QUESTIONS
If nC8 = nC2, find nC2.
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
Prove that
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
How many three-digit odd numbers are there?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
If nC10 = nC12, find 23Cn.
If 8Cr − 7C3 = 7C2, find r.
If 15Cr : 15Cr − 1 = 11 : 5, find r.
If nC4 , nC5 and nC6 are in A.P., then find n.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
Find the number of diagonals of , 1.a hexagon
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
Find the number of (i) diagonals
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If mC1 = nC2 , then
If nC12 = nC8 , then n =
If 43Cr − 6 = 43C3r + 1 , then the value of r is
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Find the value of 15C4
15C8 + 15C9 – 15C6 – 15C7 = ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.
There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.