Advertisements
Advertisements
Question
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
Solution
Out of 17 players, 11 need to be selected. There are 5 bowlers, of which four must be selected in the team. So, we have to choose 7 players from the remaining 12 players.
Required number of ways =\[{}^5 C_4 \times^{12} C_7 = 5 \times \frac{12!}{7! 5!} = 5 \times 792 = 3960\]
APPEARS IN
RELATED QUESTIONS
If nC8 = nC2, find nC2.
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
Twelve students complete in a race. In how many ways first three prizes be given?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
f 24Cx = 24C2x + 3, find x.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
If 16Cr = 16Cr + 2, find rC4.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
If mC1 = nC2 , then
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Find the value of 80C2
Find the value of 15C4 + 15C5
The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |