Advertisements
Advertisements
Question
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
Solution
Those numbers divisible by 10 are those in which 0 is placed in the ones place.
Therefore, 0 is fixed at the units place.
Therefore, there will be as many ways as there are ways of filling 5 vacant places
in succession by the remaining 5 digits (i.e., 1, 3, 5, 7 and 9).
The 5 vacant places can be filled in 5! ways.
Hence, required number of 6-digit numbers = 5! = 120
APPEARS IN
RELATED QUESTIONS
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
Compute:
(i)\[\frac{30!}{28!}\]
Compute:
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
Twelve students complete in a race. In how many ways first three prizes be given?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
If α = mC2, then find the value of αC2.
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
How many triangles can be obtained by joining 12 points, five of which are collinear?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If nC12 = nC8 , then n =
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
Find the value of 15C4
The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
A convex polygon has 44 diagonals. Find the number of its sides.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.