English

Find the Number of Combinations and Permutations of 4 Letters Taken from the Word 'Examination'. - Mathematics

Advertisements
Advertisements

Question

Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.

Solution

There are 11 letters in the word EXAMINATION, namely AA, NN, II, E, X, M, T and O.
The four-letter word may consist of
(i) 2 alike letters of one kind and 2 alike letters of the second kind
(ii) 2 alike letters and 2 distinct letters
(iii) all different letters
Now, we shall discuss the three cases one by one.
(i) 2 alike letters of one kind and 2 alike letters of the second kind:
There are three sets of 2 alike letters, namely AA, NN and II.
Out of these three sets, two can be selected in 3C2 ways.
So, there are 3C2 groups, each containing 4 letters out of which two are alike letters of one kind and two 2 are alike letters of the second kind.
Now, 4 letters in each group can be arranged in\[\frac{4!}{2! 2!}\] ways.
∴ Total number of words that consists of 2 alike letters of one kind and 2 alike letters of the second kind = \[{}^3 C_2 \times \frac{4!}{2! 2!} = 3 \times 6 = 18\]

(ii) 2 alike and 2 different letters:
Out of three sets of two alike letters, one set can be chosen in 3C1 ways.
Now, from the remaining 7 letters, 2 letters can be chosen in 7C2 ways.
Thus, 2 alike letters and 2 distinct letters can be chosen in

\[\left( {}^3 C_1 \times^7 C_2 \right)\]  ways.
So, there are 
\[\left( {}^3 C_1 \times^7 C_2 \right)\]groups of 4 letters each.
Now, the letters in each group can be arranged in \[\frac{4!}{2!}\]ways. 
∴ Total number of words consisting of 2 alike and 2 distinct letters =\[\left( {}^3 C_1 \times {}^7 C_2 \right) \times \frac{4!}{2!} = 756\] 
(iii) All different letters:
There are 8 different letters, namely A, N, I, E, X, M, T and O. Out of them, 4 can be selected in 8C4 ways.
So, there are 8C4 groups of 4 letters each. The letters in each group can be arranged in \[4!\]ways.
∴ Total number of four-letter words in which all the letters are distinct =\[{}^8 C_4 \times 4! = 1680\]

∴ Total number of four-letter words = 18 + 756 + 1680 = 2454

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.3 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.3 | Q 10 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?


A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?


In how many ways can six persons be seated in a row?


If nC12 = nC5, find the value of n.


24Cx = 24C2x + 3, find x.


If n +2C8 : n − 2P4 = 57 : 16, find n.


If 28C2r : 24C2r − 4 = 225 : 11, find r.


If α = mC2, then find the value of αC2.


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

include 2 particular players?


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;


From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


If mC1 nC2 , then


If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =


There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is


The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is


Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.


Find the value of 15C4 + 15C5 


Answer the following:

A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?


In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?


A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?


If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.


There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:

C1 C2
(a) One book of each subject; (i) 3968
(b) At least one book of each subject: (ii) 60
(c) At least one book of English: (iii) 3255

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×