English

In How Many Ways Can a Student Choose a Programme of 5 Courses If 9 Courses Are Available and 2 Specific Courses Are Compulsory for Every Student? - Mathematics

Advertisements
Advertisements

Question

In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?

Solution

2 courses are compulsory out of the 9 available courses. There are 7 more courses.
So, we need to choose 3 courses out of 7 courses.
∴ Required number of ways =\[{}^7 C_3 = \frac{7}{3} \times \frac{6}{2} \times \frac{5}{1} = 35\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.2 | Q 29 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Determine n if  `""^(2n)C_3 : ""^nC_3 = 12 : 1`


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

In how many ways can an examinee answer a set of ten true/false type questions?


There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


How many three-digit numbers are there?


How many three-digit odd numbers are there?


How many 9-digit numbers of different digits can be formed?


If nC10 = nC12, find 23Cn.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

include 2 particular players?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.


How many different selections of 4 books can be made from 10 different books, if
there is no restriction;


A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?


There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls? 


Find the number of (i) diagonals


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.


If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to


Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is


There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.


Find the value of 80C2


Find the value of 20C1619C16 


Answer the following:

A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?


How many committee of five persons with a chairperson can be selected from 12 persons.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×