English

How many committee of five persons with a chairperson can be selected from 12 persons. - Mathematics

Advertisements
Advertisements

Question

How many committee of five persons with a chairperson can be selected from 12 persons.

Sum

Solution

Total number of Persons = 12

Number of persons to be selected = 5

Out of 5, there is a chairperson

∴ Number of ways of selecting a chairperson = 12C1 = 12

Number of ways of selecting other 4 numbers out of remaining 11 persons = 11C4

∴ Total number of ways = 12C1 × 11C4

= `12 xx (11*10*9*8)/(4*3*2*1)`

= 12 × 330

= 3960

Hence, the required number of ways = 3960.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Permutations and Combinations - Exercise [Page 122]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 7 Permutations and Combinations
Exercise | Q 6 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


Compute: 

(i)\[\frac{30!}{28!}\]


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?


How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?


How many different five-digit number licence plates can be made if

the first-digit cannot be zero, but the repetition of digits is allowed?


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


Evaluate the following:

12C10


24Cx = 24C2x + 3, find x.


If n +2C8 : n − 2P4 = 57 : 16, find n.


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is included.


A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?


Find the number of diagonals of (ii) a polygon of 16 sides.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls? 


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C25C2.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×