English

Compute: (I) 30 ! 28 ! - Mathematics

Advertisements
Advertisements

Question

Compute: 

(i)\[\frac{30!}{28!}\]

Solution

\[ \frac{30!}{28!} = \frac{30 \times 29 \times 28!}{28!} \left[ \because n! = n(n - 1)! \right]\]
\[ = 30 \times 29\]
\[ = 870\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.1 [Page 4]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.1 | Q 1.1 | Page 4

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?


How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?


How many three-digit numbers are there with no digit repeated?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


If nC4 = nC6, find 12Cn.


If 18Cx = 18Cx + 2, find x.


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

 exclude 2 particular players?


From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


Find the number of diagonals of , 1.a hexagon


Find the number of (i) diagonals


Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.


How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


If 15C3r = 15Cr + 3 , then r is equal to


If C (n, 12) = C (n, 8), then C (22, n) is equal to


If mC1 nC2 , then


There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is


A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is


If n + 1C3 = 2 · nC2 , then n =


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is


There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?


Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.


Find the value of 80C2


There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×