Advertisements
Advertisements
Question
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
Solution
If 2 particular players are excluded, it would mean that out of 14 players, 11 players are selected. Required number of ways =\[{}^{14} C_{11} = \frac{14!}{11! 3!} = \frac{14 \times 13 \times 12}{3 \times 2 \times 1} = 364\]
APPEARS IN
RELATED QUESTIONS
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?
How many different five-digit number licence plates can be made if
first digit cannot be zero and the repetition of digits is not allowed,
In how many ways can six persons be seated in a row?
f 24Cx = 24C2x + 3, find x.
If nC4 , nC5 and nC6 are in A.P., then find n.
If α = mC2, then find the value of αC2.
How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
How many triangles can be obtained by joining 12 points, five of which are collinear?
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
If 20Cr + 1 = 20Cr − 1 , then r is equal to
If nCr + nCr + 1 = n + 1Cx , then x =
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Find the value of 15C4
Find the value of 80C2
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.