हिंदी

In How Many Ways Can a Football Team of 11 Players Be Selected from 16 Players? How Many of These Will Exclude 2 Particular Players? - Mathematics

Advertisements
Advertisements

प्रश्न

In how many ways can a football team of 11 players be selected from 16 players? How many of these will

 exclude 2 particular players?

उत्तर

If 2 particular players are excluded, it would mean that out of 14 players, 11 players are selected.  Required number of ways =\[{}^{14} C_{11} = \frac{14!}{11! 3!} = \frac{14 \times 13 \times 12}{3 \times 2 \times 1} = 364\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.2 | Q 4.2 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.


How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:

(i) exactly 3 girls?

(ii) atleast 3 girls?

(iii) atmost 3 girls?


Compute: 

(i)\[\frac{30!}{28!}\]


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?


In how many ways can six persons be seated in a row?


How many 3-digit numbers are there, with distinct digits, with each digit odd?


How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?


Evaluate the following:

12C10


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is included.


Find the number of diagonals of (ii) a polygon of 16 sides.


In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =


There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is


If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


Find the value of 80C2


Find the value of 20C1619C16 


The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.


A convex polygon has 44 diagonals. Find the number of its sides.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls


Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


Number of selections of at least one letter from the letters of MATHEMATICS, is ______.


There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×