हिंदी

If C0 + C1 + C2 + ... + Cn = 256, Then 2nc2 is Equal to (A) 56 (B) 120 (C) 28 (D) 91 - Mathematics

Advertisements
Advertisements

प्रश्न

If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to

विकल्प

  • 56

  • 120

  • 28

  • 91

MCQ

उत्तर

120

If set \[S\] has n elements, then 

\[C \left( n, k \right)\]  is the number of ways of choosing k elements from \[S\]
Thus, the number of subsets of  \[S\] of all possible values is given by
\[C\left( n, 0 \right) + C\left( n, 1 \right) + C\left( n, 3 \right) + . . . + C\left( n, n \right) = 2^n\]
Comparing the given equation with the above equation:
\[2^n = 256\]
\[ \Rightarrow 2^n = 2^8 \]
\[ \Rightarrow n = 8\]
\[\therefore {}^{2n} C_2 = {}^{16} C_2 \]
\[ \Rightarrow^{16} C_2 = \frac{16!}{2! 14!} = \frac{16 \times 15}{2} = 120\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.5 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.5 | Q 17 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If nC8 = nC2, find nC2.


If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


How many three-digit numbers are there with no digit repeated?


How many three-digit odd numbers are there?


In how many ways can six persons be seated in a row?


Evaluate the following:

14C3


If nC10 = nC12, find 23Cn.


If 15Cr : 15Cr − 1 = 11 : 5, find r.


If 28C2r : 24C2r − 4 = 225 : 11, find r.


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is included.


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.


Find the number of diagonals of (ii) a polygon of 16 sides.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl? 


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?


Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.


If 20Cr + 1 = 20Cr − 1 , then r is equal to


If nC12 = nC8 , then n =


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Answer the following:

A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?


If α = mC2, then αCis equal to.


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?


In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.


The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.


15C8 + 15C915C615C7 = ______.


A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.


There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C25C2.


If some or all of n objects are taken at a time, the number of combinations is 2n – 1.


If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×