Advertisements
Advertisements
प्रश्न
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
उत्तर
Number of straight lines formed joining the 10 points, taking 2 points at a time =
∴ Required number of straight lines =\[45 - 6 + 1 = 40\]
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
Prove that
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
f 24Cx = 24C2x + 3, find x.
If 8Cr − 7C3 = 7C2, find r.
If nC4 , nC5 and nC6 are in A.P., then find n.
If 2nC3 : nC2 = 44 : 3, find n.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
Find the number of diagonals of (ii) a polygon of 16 sides.
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
If 15C3r = 15Cr + 3 , then r is equal to
If 20Cr + 1 = 20Cr − 1 , then r is equal to
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
If nC12 = nC8, then n is equal to ______.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.