Advertisements
Advertisements
प्रश्न
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
विकल्प
60
120
7200
none of these
उत्तर
7200
2 out of 4 vowels can be chosen in 4C2 ways and 3 out of 5 consonants can be chosen in 5C3 ways.
Thus, there are \[\left( C_2 \times {}^5 {C^4}_3 \right)\] groups, each containing 2 vowels and 3 consonants.
Each group contains 5 letters that can be arranged in 5! ways.
∴ Required number of words =\[\left( {}^4 C_2 \times {}^5 C_3 \right) \times 5! = 60 \times 120 = 7200\]
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
How many chords can be drawn through 21 points on a circle?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit odd numbers are there?
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
In how many ways can six persons be seated in a row?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
Evaluate the following:
14C3
Evaluate the following:
35C35
If nC12 = nC5, find the value of n.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If 20Cr = 20Cr−10, then 18Cr is equal to
If 15C3r = 15Cr + 3 , then r is equal to
If nCr + nCr + 1 = n + 1Cx , then x =
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
Find the value of 80C2
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?