हिंदी

Determine the Number of 5 Cards Combinations Out of a Deck of 52 Cards If There is Exactly One Ace in Each Combination. - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.

उत्तर

There are total 4 aces in the deck of 52 cards. So, we are left with 48 cards.
∴ Required ways = \[{}^4 C_1 \times^{48} C_4 = \frac{4}{1} \times \frac{48}{4} \times \frac{47}{3} \times \frac{46}{2} \times \frac{45}{1} = 778320\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.2 | Q 26 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 12 : 1`


Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:

(i) exactly 3 girls?

(ii) atleast 3 girls?

(iii) atmost 3 girls?


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?


From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?


How many three-digit numbers are there?


How many different five-digit number licence plates can be made if

first digit cannot be zero and the repetition of digits is not allowed,


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


How many 3-digit numbers are there, with distinct digits, with each digit odd?


If nC10 = nC12, find 23Cn.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

include 2 particular players?


There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.


Find the number of diagonals of (ii) a polygon of 16 sides.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?


In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?


If 20Cr = 20Cr−10, then 18Cr is equal to


If 20Cr = 20Cr + 4 , then rC3 is equal to


If 15C3r = 15Cr + 3 , then r is equal to


If 20Cr + 1 = 20Cr − 1 , then r is equal to


If nCr + nCr + 1 = n + 1Cx , then x =


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to


There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is


The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


If α = mC2, then αCis equal to.


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×