हिंदी

Find the Number of Ways of Selecting 9 Balls from 6 Red Balls, 5 White Balls and 5 Blue Balls If Each Selection Consists of 3 Balls of Each Colour. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.

उत्तर

Required number of ways = 

6C3×5C3×5C3=6!3!3!×5!3!2!×5!3!2!=2000
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.2 | Q 25 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Determine n if  2nC3:nC3=11:1


How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?


If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?


It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


How many three-digit numbers are there with no digit repeated?


How many three-digit odd numbers are there?


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


Evaluate the following:

12C10


Evaluate the following:

35C35


If 15C3r = 15Cr + 3, find r.


How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


Find the number of diagonals of , 1.a hexagon


Find the number of (ii) triangles


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


Write r=0m n+rCr in the simplified form.


If C (n, 12) = C (n, 8), then C (22, n) is equal to


If nCr + nCr + 1 = n + 1Cx , then x =


There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?


The number of diagonals that can be drawn by joining the vertices of an octagon is


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


Find n if 2nC3:nC2 = 52:3


Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.


Find the value of 15C4 


How many committee of five persons with a chairperson can be selected from 12 persons.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl


A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.


There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C25C2.


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

The number of positive integers satisfying the inequality n+1Cn-2-n+1Cn-1100 is ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.