Advertisements
Advertisements
प्रश्न
Find the number of diagonals of , 1.a hexagon
उत्तर
A polygon of n sides has n vertices. By joining any two vertices we obtain either a side or a diagonal.
∴ Number of ways of selecting 2 out of 9 \[=^n C_2 = \frac{n\left( n - 1 \right)}{2}\]
Out of these lines, n lines are the sides of the polygon.
∴ Number of diagonals =\[\frac{n\left( n - 1 \right)}{2} - n = \frac{n\left( n - 3 \right)}{2}\]
1. In a hexagon, there are 6 sides.
∴ Number of diagonals =\[\frac{6\left( 6 - 3 \right)}{2} = 9\]
APPEARS IN
संबंधित प्रश्न
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
How many three-digit numbers are there?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
How many 3-digit numbers are there, with distinct digits, with each digit odd?
Evaluate the following:
12C10
Evaluate the following:
35C35
If 15Cr : 15Cr − 1 = 11 : 5, find r.
If 16Cr = 16Cr + 2, find rC4.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
If 20Cr = 20Cr−10, then 18Cr is equal to
If 15C3r = 15Cr + 3 , then r is equal to
If mC1 = nC2 , then
If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =
There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.
To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.
The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.