हिंदी

How Many Different Committees of 5 Can Be Formed from 6 Men and 4 Women on Which Exact 3 Men and 2 Women Serve?(A) 6(B) 20(C) 60(D) 120 - Mathematics

Advertisements
Advertisements

प्रश्न

How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120

विकल्प

  • 6

  • 20

  • 60

  • 120

MCQ

उत्तर

120

\[\text{Number of committes that can be formed} = {}^6 C_3 \times {}^4 C_2 \]
\[ = \frac{6!}{3! 3!} \times \frac{4!}{2! 2!} \]
\[ = \frac{6 \times 5 \times 4}{3 \times 2} \times \frac{4 \times 3}{2} \]
\[ = 120\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.5 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.5 | Q 20 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.


Compute: 

(i)\[\frac{30!}{28!}\]


Compute:

\[\frac{11! - 10!}{9!}\]

Compute:

 L.C.M. (6!, 7!, 8!)


There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?


How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?


Evaluate the following:

14C3


If 8Cr − 7C3 = 7C2, find r.


If 28C2r : 24C2r − 4 = 225 : 11, find r.


If 2nC3 : nC2 = 44 : 3, find n.


If 16Cr = 16Cr + 2, find rC4.


How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?


From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


If C (n, 12) = C (n, 8), then C (22, n) is equal to


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to


Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is


If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120


Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.


Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.


Answer the following:

A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×