Advertisements
Advertisements
Question
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
Options
6
20
60
120
Solution
120
\[\text{Number of committes that can be formed} = {}^6 C_3 \times {}^4 C_2 \]
\[ = \frac{6!}{3! 3!} \times \frac{4!}{2! 2!} \]
\[ = \frac{6 \times 5 \times 4}{3 \times 2} \times \frac{4 \times 3}{2} \]
\[ = 120\]
APPEARS IN
RELATED QUESTIONS
If nC8 = nC2, find nC2.
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
Compute:
Prove that
In how many ways can an examinee answer a set of ten true/false type questions?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
If n +2C8 : n − 2P4 = 57 : 16, find n.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
The number of diagonals that can be drawn by joining the vertices of an octagon is
Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?
If n + 1C3 = 2 · nC2 , then n =
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
A convex polygon has 44 diagonals. Find the number of its sides.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.