English

The Number of Diagonals that Can Be Drawn by Joining the Vertices of an Octagon is (A) 20 (B) 28 (C) 8 (D) 16 - Mathematics

Advertisements
Advertisements

Question

The number of diagonals that can be drawn by joining the vertices of an octagon is

Options

  •  20

  • 28

  •  8

  • 16

MCQ

Solution

20
An octagon has 8 vertices. 
The number of diagonals of a polygon is given by

\[\frac{n \left( n - 3 \right)}{2}\] .
∴ Number of diagonals of an octagon =  \[\frac{8 \left( 8 - 3 \right)}{2} = 20\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.5 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.5 | Q 22 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


In how many ways can an examinee answer a set of ten true/false type questions?


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


How many 9-digit numbers of different digits can be formed?


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


Evaluate the following:

\[\sum^5_{r = 1} {}^5 C_r\]

 


If n +2C8 : n − 2P4 = 57 : 16, find n.


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

 exclude 2 particular players?


A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?


How many triangles can be obtained by joining 12 points, five of which are collinear?


In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?


Find the number of (ii) triangles


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


Answer the following:

A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?


There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


If nC12 = nC8, then n is equal to ______.


The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.


The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.


A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.


There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C25C2.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×