Advertisements
Advertisements
Question
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
Solution
`(""^(2n)C_3)/(""^nC_3) = 11/1`
⇒ `((2n)!)/(3!(2n - 3)!) xx (3!(n - 3)!)/(n!) = 11/1`
⇒ `((2n)(2n - 1)(2n - 2)(2n - 3)!)/((2n - 3)!) xx ((n - 3)!)/(n(n - 1)(n - 2)(n - 3)!) = 11`
⇒ `(2(2n - 1)(2n - 2))/((n - 1)(n - 2)) = 11`
⇒ `(4(2n - 1)(n - 1))/((n - 1)(n - 2)) = 11`
⇒ `(4(2n - 1))/((n - 2)) = 11`
⇒ 4(2n - 1) = 11(n - 2)
⇒ 8n - 4 = 11n - 22
⇒ 11n - 8n = -4 + 22
⇒ 3n = 18
⇒ n = 6
APPEARS IN
RELATED QUESTIONS
If nC8 = nC2, find nC2.
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
Compute:
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
Twelve students complete in a race. In how many ways first three prizes be given?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
Evaluate the following:
35C35
If nC4 = nC6, find 12Cn.
If 18Cx = 18Cx + 2, find x.
If 15C3r = 15Cr + 3, find r.
If 16Cr = 16Cr + 2, find rC4.
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If 20Cr = 20Cr−10, then 18Cr is equal to
If 20Cr + 1 = 20Cr − 1 , then r is equal to
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Find the value of 20C16 – 19C16
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.