Advertisements
Advertisements
Question
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
Solution
Number of flags = 7
∴ Number of ways of selecting one flag = 7
Number of ways of selecting the other flag = 6 (as only 6 colours are available for use)
A signal requires use of two flags
∴ Total number of signal that can be generated = `7xx6=42`
APPEARS IN
RELATED QUESTIONS
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
In how many ways can an examinee answer a set of ten true/false type questions?
How many three-digit numbers are there with no digit repeated?
How many 9-digit numbers of different digits can be formed?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
Evaluate the following:
35C35
Evaluate the following:
n + 1Cn
If nC10 = nC12, find 23Cn.
If 8Cr − 7C3 = 7C2, find r.
If α = mC2, then find the value of αC2.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
Find the number of diagonals of , 1.a hexagon
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
If 20Cr = 20Cr + 4 , then rC3 is equal to
If 20Cr + 1 = 20Cr − 1 , then r is equal to
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
If n + 1C3 = 2 · nC2 , then n =
The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.